Load the coin model and example data available within treepplr
The data in this example is a sequence of coin flip results. phyjson is the data format that treeppl can read.
data
#> $coinflips
#> [1] FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
#>
#> attr(,"class")
#> [1] "phyjson"
Run the coin.tppl
TreePPL program.
output_json <- tp_treeppl(model = model, model_file_name = "coin", data = data, data_file_name = "coin")
Plot the posterior distribution (normalized weights).
output <- tp_parse_coin(output_json)
max <- max(output["weights"])
output["weights"] <- exp(output["weights"] - max)
ggplot(output) +
geom_histogram(aes(samples, y = after_stat(density), weight=weights), col = "white", fill = "lightblue") +
geom_density(aes(samples, weight=weights)) +
theme_bw()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.